
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Supporting Social Data Observatory with Customizable Index

Structures on HBase - Architecture and Performance

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The intensive research activities in social data analysis in recent years suggest the necessity and great potential of a

public social data observatory. To ef-fectively support a social data observatory, the storage platform must satisfy

its spe-cial requirements for loading and storage of Terabyte-level datasets, as well as effi-cient evaluation of

queries involving analysis of the texts of millions of social updates. Traditional inverted indexing techniques do not

meet such requirements due to their targeted use cases in text retrieval scenarios. To address these problems, we

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

distributed architecture, performance evaluation, HBase, Hadoop, Riak

Xiaoming Gao, Judy Qiu, Evan Roth, Karissa McKelvey, Clayton Davis,

Andrew Younge, Emilio Ferrara, Fil Menczer

Indiana University at Bloomington

Trustees of Indiana University

509 E 3RD ST

Bloomington, IN 47401 -3654

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Technical Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-12-1-0037

Form Approved OMB NO. 0704-0188

61766-NS-DRP.31

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Alessandro Flammini

812-856-1830

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

Supporting Social Data Observatory with Customizable Index Structures on HBase - Architecture and Performance

Report Title

ABSTRACT

The intensive research activities in social data analysis in recent years suggest the necessity and great potential of a

public social data observatory. To ef-fectively support a social data observatory, the storage platform must satisfy its

spe-cial requirements for loading and storage of Terabyte-level datasets, as well as effi-cient evaluation of queries

involving analysis of the texts of millions of social updates. Traditional inverted indexing techniques do not meet

such requirements due to their targeted use cases in text retrieval scenarios. To address these problems, we propose a

general indexing framework, IndexedHBase, to build specially cus-tomized index structures for facilitating efficient

queries, and employ the HBase system for distributed data storage. IndexedHBase is used to support the Truthy

system that collects and analyzes data obtained through the Twitter streaming API. To handle the special queries in

Truthy, we develop a parallel query evaluation strategy that can explore the customized index structures efficiently.

We evaluate the performance of IndexedHBase on FutureGrid, and compare it with Riak, a widely adopted

commercial NoSQL database system. The results show that In-dexedHBase provides a data loading speed that is 6

times faster than Riak, and is significantly more efficient in evaluating queries involving large result sets.

Supporting Social Data Observatory with

Customizable Index Structures on HBase -

Architecture and Performance

Xiaoming Gao, Judy Qiu, Evan Roth, Karissa McKelvey, Clayton Davis,

Andrew Younge, Emilio Ferrara, Fil Menczer

 School of Informatics and Computing, Indiana University

Abstract. The intensive research activities in social data analysis in recent years

suggest the necessity and great potential of a public social data observatory. To ef-

fectively support a social data observatory, the storage platform must satisfy its spe-

cial requirements for loading and storage of Terabyte-level datasets, as well as effi-

cient evaluation of queries involving analysis of the texts of millions of social

updates. Traditional inverted indexing techniques do not meet such requirements

due to their targeted use cases in text retrieval scenarios. To address these problems,

we propose a general indexing framework, IndexedHBase, to build specially cus-

tomized index structures for facilitating efficient queries, and employ the HBase

system for distributed data storage. IndexedHBase is used to support the Truthy

system that collects and analyzes data obtained through the Twitter streaming API.

To handle the special queries in Truthy, we develop a parallel query evaluation

strategy that can explore the customized index structures efficiently. We evaluate

the performance of IndexedHBase on FutureGrid, and compare it with Riak, a

widely adopted commercial NoSQL database system. The results show that In-

dexedHBase provides a data loading speed that is 6 times faster than Riak, and is

significantly more efficient in evaluating queries involving large result sets.

1. Introduction

Data intensive computing brings challenges in both large-scale batch analysis and

real-time streaming data processing. To meet these challenges, improvements to

various levels of cloud storage systems are necessary. Specifically, regarding the

problem of search in Big Data, using indices to facilitate query evaluation has been

a well-researched area in the field of database [1], and inverted indices [4] are spe-

cially designed for full-text search. A basic idea is to first build index data-structures

through a full scan of data and documents and then facilitate fast access to a small

fraction of the data via indices to achieve highly optimized search performance.

2

Beyond these system features, it is still challenging to enable real-time search

and efficient analysis over a broader spectrum of social data scenarios. For example,

[16] discusses the temporal and spatial challenges in context-aware search and anal-

ysis on social media data. FluMapper [17] investigates an interactive map-based

interface for flu-risk analysis based on near real-time processing of social updates

collected from the Twitter streaming API [23]. Truthy [5] builds a public social data

observatory that analyzes and visualizes information diffusion on Twitter, covering

a broad spectrum of social activities, including presidential elections [9], protest

events [12][15], meme competition [11] and user influence [10]. This process in-

volves analysis of some general entities and relationships contained in its Terabyte-

level large-scale social dataset, such as tweets, users, hashtags, retweets, and user-

mentions during specific time windows of the social events.

This chapter describes our research towards building an efficient and scalable

storage platform for Truthy. Many existing NoSQL databases, such as Solandra

(now known as DataStax) [21] and Riak [22], support distributed inverted indices

[4] to facilitate searching text data. However, traditional distributed inverted indices

are designed for text retrieval applications; they may incur unnecessary storage and

computation overhead during indexing and query evaluation time, and thus are not

suitable for handling Truthy queries. For example, how to efficiently evaluate its

temporal queries involving text search on hundreds of millions of social updates

remains a challenge.

We propose IndexedHBase, a general customizable indexing framework on

HBase [19] as the basis of the storage platform, which allows users to flexibly de-

fine the most suitable index structures to facilitate their queries. Furthermore, based

on Hadoop MapReduce [18], we implement a parallel query evaluation strategy that

can make the best use of the customized index structures to achieve efficient eval-

uation of Truthy queries.

Currently the total size of historical data on Truthy is about 10 Terabytes. At the

time of this writing, the data rate of the Twitter streaming API is about 45 million

per day, leading to a growth of ~20GB in the total data size. We develop efficient

data loading strategies on that can accommodate fast loading of the historical files

as well as the growing speed of streaming data. We evaluate the performance of

IndexedHBase on FutureGrid [7]. Our preliminary results show that compared with

Riak, a widely adopted commercial NoSQL database system, IndexedHBase pro-

vides significantly (6 times) faster data loading speed while requiring much less

storage size, and is more efficient (by multiple times) in evaluating queries derived

from large result sets.

The rest of this chapter is organized as follows. Section 2 analyzes the character-

istics of data and queries in Truthy. Section 3 describes the architecture of In-

dexedHBase, and explains the design and implementation of its data loading, index-

ing, and query evaluation strategies. Section 4 evaluates the performance of

IndexedHBase and compares it with Riak. Section 5 discusses related work. Section

6 concludes and prospects our future work.

3

2. Data and Query Patterns

The entire dataset of Truthy consists of two parts: historical data in .json.gz files,

and real-time data coming from the Twitter stream. Fig. 1 illustrates a sample data

item, which is a structured JSON string containing information about a tweet and

the user who posted it. Furthermore, if the tweet is a retweet, the content the original

tweet is also included in a “retweeted_status” field. For hashtags, user-mentions,

and URLs contained in the text of the tweet, an “entities” field is included to give

more detailed information, such as the ID of the mentioned user, and the expanded

URLs.

Fig. 1. An example tweet in JSON format

Truthy uses the concept of “memes” to represent sets of related tweets corre-

sponding to specific discussion topics, communication channels or information

sources shared among Twitter users. Memes can be identified through elements

contained in the texts of tweets, such as keywords, hashtags (e.g., #euro2012), user-

mentions (e.g., @youtube), and URLs. Truthy supports a set of temporal queries for

extracting and generating various information about tweets, users, and memes.

These queries can be categorized into two subsets. The first contains basic queries

for getting the IDs or contents of tweets created during a given time window based

on their text or user information, including:

get-tweets-with-meme (memes, time_window)

get-tweets-with-text (keyword, time_window)

get-tweets-with-user (user_id, time_window)

get-retweets (tweet_id, time_window)

4

For the parameters, “time_window” is given in the form of a pair of strings mark-

ing the start and end points of a time window, e.g., [2012-06-08T00:00:00, 2012-

06-23T23:59:59]. “memes” is given as a list of hashtags, user-mentions, and URLs.

“memes” and “keyword” may contain wildcards to specify prefix queries, e.g.,

“#occupy*”, which will match all tweets containing hashtags starting with “#oc-

cupy”.

The second subset contains queries for generating required information based on

analysis of the tweets returned from the first subset of queries, including timestamp-

count, user-post-count, meme-post-count, meme-cooccurrence-count, get-re-

tweet-edges, get-mention-edges (meme(s), time_window). Here for example,

“timestamp-count” returns the number of tweets concerning the given memes

posted on each day within the time window. Each “edge” has 3 components: a

“from” user ID, a “to” user ID, and a weight indicating how many times the “from”

user has retweeted the tweets from the “to” user, or mentioned the “to” user in

his/her tweets.

The most significant characteristic of these queries is that they all take a time

window as a parameter. This originates from the temporal nature of social activities.

In order to evaluate these queries, an obvious brute-force solution is to scan the

whole dataset, try to match the content and creation time of each tweet with the

query parameters, and generate the results using information contained in the

matched tweets. However, due to the drastic difference between the size of the en-

tire dataset and the size of the query result, this strategy is prohibitively expensive.

For example, the total number of tweets for 06/01/2012 – 06/20/2012 is

626,958,383, while the number of tweets containing the most popular meme

“@youtube” is only 1,906,108, which is smaller by more than two orders of mag-

nitude. In order to efficiently locate the related tweets by their text content, a natural

strategy is to utilize inverted indices [4], which are supported by many existing dis-

tributed NoSQL database systems, such as Solandra [21] and Riak [22]. However,

traditional distributed inverted indices do not provide the best solution for Truthy

queries for the following reasons:

First, traditional inverted indices are mainly designed for text retrieval applica-

tions, where the main goal is to efficiently find the top K (with a typical value of 20

or 50 for K) most relevant text documents regarding a query composed of a set of

keywords. To achieve this goal, information such as frequency and position of key-

words in the documents is stored and used for computing relevance scores between

documents and keywords during query evaluation. In contrast, queries in Truthy are

designed for analysis purposes, meaning that they have to process all the related

tweets, instead of the top K most relevant ones, to generate the results. Therefore,

data about frequency and position are extra overhead for the storage of inverted

indices, the same for relevance scoring in the query evaluation process. The query

evaluation performance can be further improved by removing these items from tra-

ditional inverted indices.

Second, query execution plans using traditional inverted indices are not efficient

enough for handling Truthy queries. Fig. 2 illustrates a typical query execution plan

5

for “get-tweets-with-meme” using two separate indices on memes and creation time

of tweets. This plan uses the meme index to find the IDs of all tweets containing the

given memes, and then utilizes the time index to find the set of tweet IDs within the

given time window, and finally computes the intersection of these two sets to get

the results. Assuming the size of the posting lists for the given memes to be m, and

the number of tweet IDs coming from the time index to be n, the complexity of the

whole query evaluation process will be O(m + n) = O(max(m, n)), using a merge-

based or hashing-based algorithm for the intersection operation. However, due to

the characteristics of the dataset in Truthy, there is normally an orders-of-magnitude

difference between m and n, as discussed above. As a result, although the size of

the query result is bounded by min(m, n), a major part of query evaluation time is

actually spent on scanning and checking irrelevant entries of the time index. In clas-

sic text search engines, techniques such as skipping or frequency-ordered inverted

lists [4] may be utilized to quickly return the top K most relevant results without

evaluating all the related tweets. However, such optimizations are not applicable in

Truthy due to the analysis purpose of the queries. Furthermore, in case of high cost

estimation for accessing the time index, the search engine may choose to only use

the meme index, and generate the results by checking the contents of related tweets.

However, a big part of time is still wasted in checking irrelevant tweets falling out

of the given time window. The query evaluation performance can obviously be fur-

ther improved if the unnecessary scanning cost can be avoided.

Fig. 2. A typical query execution plan using indices on meme and creation time

We suggest using a customized index structure in IndexedHBase, as illustrated

in Fig. 3. It merges the meme index and time index, and replaces the frequency and

position information in the posting lists of the meme index with creation time of

corresponding tweets. Facilitated by this customized index structure, the query eval-

uation process for “get-tweets-with-meme” can be easily implemented by going

through the index entries related to the given memes, and selecting the tweet IDs

associated with a creation time within the given time window. The complexity of

the new query evaluation process is O(m), which is significantly lower than

O(max(m, n)). To support such index structures, IndexedHBase provides a general

customizable indexing framework, which will be explained in Section 3.

6

Fig. 3. A customized meme element index structure

3. Design and Implementation of IndexedHBase

3.1 System Architecture

Fig. 4 illustrates the system architecture of IndexedHBase. HBase is used to host

the entire Truthy dataset and related indices with two sets of tables: data tables con-

taining original data, and index tables containing customized index structures for

query evaluation. The customized indexing framework supports two mechanisms

for building index tables: online indexing that indexes data on the fly when they are

loaded into data tables, and batch indexing that is used for building new index struc-

tures based on existing data tables. Based on the customizable indexing framework,

two data loading strategies are supported to respectively load historical data and

streaming data. The parallel query evaluation strategy provides efficient evaluation

mechanisms for all the Truthy queries, and is used by upper level Truthy applica-

tions to generate various statistics and visualizations.

Fig. 4. System Architecture of IndexedHBase

3.2 Customizable Indexing Framework

Table Schemas on HBase

Based on the extendible “BigTable” data model [6] supported by HBase, we design

the table schemas in Fig. 5 for Truthy. Tables are managed in units of months – one

7

set of tables are created for each month’s data. This management has two benefits.

First, the loading of streaming data only changes the tables relative to the current

month and does not impact tables for previous months. Secondly, during query eval-

uations, the amount of index data and original data that needs to be scanned is lim-

ited by the months covered under the time window parameter.

Some details about these tables need to be clarified before proceeding further.

Each table contains only one column family, e.g., “details” or “tweets”, on account

of data in the columns being mostly accessed together. Also the user table uses a

concatenation of user ID and tweet ID as the row key because Truthy requires keep-

ing track of changes in user metadata associated with each tweet. Finally, besides

the text index table, a separate meme index table is created to index the hashtags,

user-mentions, and URLs contained in the tweet texts. This is because some special

cases, such as expandable URLs and reused screen names in user-mentions, cannot

be handled properly by the text index. The meme index table uses hashtags, user-

mentions, and URLs as row keys, and each row contains a different number of col-

umns. The name of each column is the ID of one tweet containing the corresponding

meme, and the timestamp of the cell value marks the creation time of the tweet. The

structures of other index tables can be similarly inferred from Fig. 5.

Fig. 5. Table schemas used in IndexedHBase for Truthy

Using HBase tables to implement customized index structures has the following

advantages:

(1) The flexible data model of HBase is suitable for storing the entries of our cus-

tomized index structures. If needed, users can further extend the existing struc-

tures by embedding any additional information in the cell value of each column.

(2) Based on the distributed architecture of HBase, we can achieve high availabil-

ity for index data and high performance for distributed index access.

(3) Since rows in tables are sorted by row keys, prefix queries can be easily com-

pleted through range scans over the corresponding index tables.

8

(4) Since each index structure is implemented as a separate table, it is easy to re-

build an index when its structure is modified, or to build a new customized

index structure for handling new queries, without having to reload the dataset.

Since the data access pattern in Truthy is mostly write-once-read-many, having

multiple index tables will not incur any maintenance cost beyond the initial

loading and indexing step.

(5) Based on the original support for Hadoop MapReduce on HBase, it is possible

to complete efficient parallel analysis on the index data to generate useful meas-

urements, such as meme popularity distribution used in [11].

Customizable Indexer Implementation

In order to generate records for the index tables, IndexedHBase implements a cus-

tomizable indexer library, shown in Fig. 6. Users can customize their index tables

by defining what to use as keys and what to use as entries in the index configuration

file. The customizable indexer automatically generates index table records accord-

ing to the configuration file, and inserts them into index tables upon the client ap-

plication’s request.

Fig. 6. Components of customizable indexer

Fig. 7 gives an example of the index configuration file in XML format. The

whole file contains multiple “index-config” elements. Each element contains the

mapping information between one source table and one index table. Users can em-

ploy this element to flexibly define how to generate records for the index table based

on a given row from the source table. To deal with even more complicated index

structures, they can also implement a user defined customizable indexer on their

own, and specify to use this indexer by setting the “indexer-class” element.

The general customizable indexer and the user defined customizable indexer

must both implement a common interface, which declares one “index()” method, as

presented in Fig. 8. This method takes the name and row data of a source table as

parameters, and returns a map as a result. The key of each map entry is the name of

one index table name, and the value is a list of records for that index table.

Upon initialization, the general customizable indexer reads the index configura-

tion file, and analyzes each “index-config” element. If a user defined indexer class

9

is specified, a corresponding indexer instance will be created. When “index()” is

invoked during runtime, the general customizable indexer will go through all the

“index-config” elements related to the source table, and generate records for each

related index table, either by following the rules defined in “index-config” or by

invoking a user-defined indexer. Finally, all index table names and records are

added to the result map and returned to the client application.

Fig. 7. An example customized index configuration file

Fig. 8. Pseudocodes for the “CustomizableIndexer” interface

Online Indexing Mechanism and Batch Indexing Mechanism

IndexedHBase provides two means of indexing data in the tweet table and user ta-

ble: online indexing and batch indexing. The online indexing mechanism is imple-

mented through the “insert()” method of the general customizable indexer, dis-

played in Fig. 6. The client application invokes the “insert()” method of the general

customizable indexer to insert one row to a source table. The indexer will first insert

the given row to the source table, and then generate index table records for this row

by invoking “index()”, and insert them to the corresponding index tables. Therefore,

from the client application’s perspective, data in the source table are indexed

“online” when first inserted into the table.

The batch indexing mechanism is designed for generating new customized index

tables after all the data have been loaded into the source table. This mechanism is

implemented as a “map-only” MapReduce job using the source table as input. The

job accepts a source table name and an index table name as parameters, and starts

multiple mappers to index data in the source table in parallel, each processing one

region of the table. Each mapper works as a client application to the general cus-

tomizable indexer, and creates one indexer instance at its initialization time. The

10

indexer is initialized using the given index table name so that when “index()” is

invoked, it will only generate index records for that single table. The “map()” func-

tion takes a <key, value> pair as input, where “key” is a row key in the source table

and “value” is the corresponding row data. For each row of the source table, the

mapper uses the general customizable indexer to generate index table records and

write these records as output. All output records are handled by the table output

format, which will automatically insert them into the index table.

3.3 Data Loading Strategies

IndexedHBase supports distributed loading strategies for both streaming data and

historical data in Truthy. Fig. 9 shows the architecture of the streaming data loading

strategy. In this strategy, one or multiple distributed loaders are running concur-

rently. All loaders are connected to the same stream using the Twitter streaming

API, and each is responsible for loading a portion of the data. Each loaders is as-

signed a unique loader ID, and works as a client application to the general custom-

izable indexer. Upon receiving a tweet JSON string from the stream, the loader will

first take the tweet ID and do a modulus operation over the total number of loaders

in the system. If the result equals its loader ID, it will load the tweet to In-

dexedHBase. Otherwise the tweet is skipped. To load a tweet, the loader first gen-

erates records for the tweet table and user table based on the JSON string, then loads

them into the tables by invoking the “insert()” method of the general customizable

indexer, which will complete online indexing and update all the data tables as well

as relevant index tables.

Fig. 9. Streaming data loading strategy

The historical data loading strategy is implemented as a MapReduce program.

Since tables are managed in the unit of months, one separate MapReduce job is

launched to load the historical .json.gz files for each month, and multiple jobs can

11

be running simultaneously in the system. Each one will start multiple mappers in

parallel, and every mapper is responsible for loading data from one file. At running

time, each line in the .json.gz file is given to the mapper as one input, which contains

the JSON string of one tweet. The mapper first creates records for the tweet table

and user table based on the JSON string and then invokes the general customizable

indexer to get all the related index table records. All table records are handled by

the multi-table output format, which automatically inserts them into the related ta-

bles. Finally, if the JSON string contains a “retweeted_status”, the corresponding

substring will be extracted and processed in the same way.

3.4 Parallel Query Evaluation Strategy

Based on the customized index tables generated by the data loading and indexing

process, we develop a two-phase parallel query evaluation strategy viewable in Fig.

10. For any given query, the first phase uses multiple threads to find the IDs of all

related tweets from the index tables in relevant months, and saves them in a series

of files containing a fixed number (e.g., 30000) of tweet IDs. The second phase

launches a MapReduce job to process the tweets in parallel and extract the necessary

information to complete the query. For example, to evaluate “user-post-count”, each

mapper in the job will access the tweet table to figure out the user ID corresponding

to each tweet ID, count the number of tweets by each user, and output all counts

when it finishes. The output of all the mappers will be processed by multiple reduc-

ers in parallel to finally generate the total tweet count of each user ID. Implementa-

tion of the other queries can be similarly inferred.

Two special aspects of the query evaluation strategy worth further discussions.

First, as described in Section 2, prefix queries can be constructed by using pa-

rameters such as “#occupy*”. For this type of queries, IndexedHBase provides two

options for getting the related tweet IDs in the first phase. One option is to simply

complete a sequential range scan of rows in the corresponding index tables and get

all qualified tweet IDs. The other option is to use a MapReduce program to complete

parallel scanning over the range of rows. This option is only faster for parameters

covering a large range spanning multiple regions of the index table. When using

prefix queries, users are allowed to specify which option to use based on their esti-

mation of the covered range size.

Next, the number of tweet IDs in each tweet ID file actually implies a tradeoff

between parallelism and scheduling overhead. When this number is set lower, more

mappers will be launched in the parallel evaluation phase, which means the amount

of work done by each mapper decreases while the total task scheduling overhead

increases. The optimal number to use actually depends on the total number of re-

lated tweets and the amount of resources available in the infrastructure. Therefore,

we set the default value of this number to 30,000 and leave it configurable by the

user when they run specific queries.

12

Fig. 10. Two-phase parallel evaluation process for an example “user-post-count” query

4. Performance Evaluation Results and Comparison with Riak

4.1 Testing Environment Configuration

We use 8 nodes on the Bravo cluster of FutureGrid to complete tests for both In-

dexedHBase and Riak. The hardware configuration for all eight nodes is listed in

Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, Hadoop

1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS headnode,

Hadoop jobtracker, Zookeeper, and HBase master; the other 7 are used to host

HDFS datanodes, Hadoop tasktrackers, and HBase region servers. Data replication

level is set to 2 on HDFS. The configuration details of Riak will be given in Section

4.2. Besides Bravo, we also use the Alamo HPC cluster of FutureGrid to test the

scalability of the historical data loading strategy of IndexedHBase, since Alamo can

provide a larger number of nodes through dynamic HPC jobs. Software configura-

tion of Alamo is mostly the same as Bravo.

Table 1. Per-node configuration on Bravo and Alamo Clusters

Cluster CPU RAM Hard

Disk

Network

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand

Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand

4.2 Configuration and Implementation on Riak

Riak is a distributed NoSQL database for storing data in the form of <key, value>

objects. It organizes distributed nodes based on a P2P architecture with no central

13

servers, and distributes data objects among different nodes using consistent hashing

over the keys. Data are replicated to achieve high availability, and failures are han-

dled through a “hinted handoff” mechanism among neighboring nodes.

Riak supports various mime types for the value of data objects, including JSON,

plain text, Erlang binaries, etc. It provides a “Riak Search” module that can build

distributed inverted indices on data objects for full-text search purposes. Users can

use buckets to organize their data objects, and configure indexed fields on the

bucket level. Besides basic inverted indexing functionality, Riak supports a special

feature called “inline fields.” If a field is specified as an “inline” field, its value will

be attached to the document IDs in the related posting lists, as illustrated in Fig. 11.

Similar to our customized index tables in IndexedHBase, inline fields can be

used to carry out an extra filtering operation to speed up queries involving multiple

fields. However, they are different in two basic aspects:

For starters, support for inline fields is still an extension to traditional inverted

indices, which means overhead such as frequency information and document scor-

ing is still inevitable in Riak Search.

Secondly, customizable index structures are totally flexible in the sense that the

structure of each index can be independently defined to contain any subset of fields

from the original data. In contrast, if one field is defined as an inline field in Riak

Search, its value will be attached to the posting lists of the indices of all the other

indexed fields, regardless of whether it is useful. As a demonstration of this prob-

lem, the “sname index table” in Fig. 5 uses the creation time of user accounts as

timestamps, while the “meme index table” uses creation time of tweets. Such flex-

ibility is not achievable on Riak – users can attach similar information to the indices

by specifying the creation time of user accounts and tweets as two separate inline

fields, but that will obviously result in further unnecessary storage overhead.

Fig. 11. An example of inline field (created_at) in Riak

In our tests, all 8 nodes of Bravo are used to construct a Riak ring. Each node

runs Riak 1.2.1, using LevelDB as the storage backend. We create two different

buckets to index data with different search schemas. Data replication level is set to

2 on both buckets. Within each bucket, <key, value> pairs are employed to directly

store the tweet ID and JSON string of each tweet. The original JSON string is ex-

tended with an extra “memes” field, which contains all the hashtags, user-mentions,

and URLs in the tweet, separated by a ‘\t’ character. Riak search is enabled on both

buckets to facilitate query evaluation, and the “user_id”, “memes”, “text”, “re-

tweeted_status_id”, “user_screen_name”, and “created_at” fields are indexed. Spe-

cifically, “created_at” is defined as a separate indexed field on one bucket, and as

an “inline only” field on the other bucket, meaning that it does not have a separate

14

index but is stored together with the entries of other indices to enable inline filtering

for queries on the other fields.

Riak provides a lightweight MapReduce framework for users to query the data

by defining MapReduce functions in JavaScript. Furthermore, Riak supports

MapReduce over the results of Riak Search. We use this feature to implement

Truthy Queries, and Fig. 12 shows an example query implementation. When this

query is submitted, Riak will first use the index on “memes” to find related tweet

objects (as specified in the “input” field), then apply the map and reduce functions

to these tweets (as defined in the “query” field) to get the final result.

Fig. 12. An example Truthy query implementation on Riak

4.3 Data Loading Performance

Historical Data Loading Performance

We use all the .josn.gz files of June 2012 to test the historical data loading perfor-

mance of IndexedHBase and Riak. The total data size is 352GB. On IndexedHBase,

a MapReduce job is launched for historical data loading, with each mapper pro-

cessing one file. On Riak, all 30 files are distributed among 8 nodes of the cluster,

so each node ends up with 3 or 4 files. Then an equal number of threads per node

were created to load all the files concurrently to the bucket where “created_at” is

configured as an inline field. Threads continue reading the next tweet, apply pre-

processing with the “created_at” field and “memes” field, and then send the tweet

as an object of mime type “JSON” to the Riak server, which will automatically

index all the fields as defined in the search schema.

Table 3. Historical data loading performance comparison

 Loading

time

(hours)

Loaded

total data

size (GB)

Loaded original

data size (GB)

Loaded

index data

size (GB)

Riak 294.11 3258 2591 667

IndexedHBase 45.47 1167 955 212

Riak / IndexeHBase 6.47 2.79 2.71 3.15

15

Table 3 summarizes the data loading time and loaded data size on both platforms.

We can see that IndexedHBase is over 6 times faster than Riak in loading historical

data, and uses significantly less disk space for storing the data. Considering the

original file size of 352GB and a replication level of 2, the storage space overhead

for index data on IndexedHBase is moderate.

We analyze these performance measurements below. By storing data with tables,

IndexedHBase applies a certain degree of data model normalization, and thus avoids

storing some redundant data. For example, many tweets in the original .json.gz files

contain retweeted status, and many of them are retweeted multiple times. On In-

dexedHBase, even if a tweet is retweeted repeatedly, only one record is kept for it

in the tweet table. On Riak, such a “popular” tweet will be stored within the JSON

string of every corresponding retweet. The difference in loaded index data size

clearly demonstrates the advantage of having a fully customizable indexing frame-

work. By avoiding frequency and position information and only incorporating use-

ful fields in the customized index tables, IndexedHBase saves 455GB of disk space

in storing index data, which is more than 1/3 the total loaded data size of 1167GB.

Also note that IndexedHBase compresses table data using Gzip, which generally

provides a better compression ratio than Snappy used in Riak.

The difference in loaded data size explains only a part of the gap in total loading

time. Two other major reasons are:

(1) On IndexedHBase, the loaders are responsible for generating both data tables

and index tables. Therefore, the JSON string of each tweet is parsed only once

when it is read from the .json.gz files and converted to table records. On Riak,

since indexing is done by Riak servers instead of the loaders, the JSON string

of each tweet is actually parsed twice – first by the loaders for preprocessing,

and again by the server for extracting indexed fields.

(2) When building inverted indices, Riak not only uses more space to store the

frequency and position information, but also spends more time collecting such

information. Therefore, the customized index structures on IndexedHBase not

only reduce disk storage requirement, but also lead to a faster loading speed.

Scalable Historical Data Loading on IndexedHBase

We test the scalability of historical data loading on IndexedHBase with the Alamo

cluster of FutureGrid. In this test, we fix the dataset to files for two months, May

2012 and June 2012, and measure the total loading time at different cluster sizes

with 16, 24, and 32 data nodes. The results are illustrated in Fig. 13. When the clus-

ter size is doubled from 16 to 32 data nodes, the total loading time drops from 142.72

hours to 93.22 hours, which implies a sub-linear scalability. Due to concurrent ac-

cess from the mappers of the historical data loading jobs to HBase region servers,

it is almost impossible to get an ideal linear scalability. Nonetheless, our results here

clearly demonstrate that we can get more system throughput and faster data loading

speed by adding more nodes to the cluster.

16

Fig. 13. Historical data loading scalability

to cluster size

Fig. 14. Results for streaming data load-

ing test

Streaming Data Loading Performance on IndexedHBase

The purpose of streaming data loading tests is to verify that IndexedHBase can pro-

vide enough data throughput to accommodate the growing data speed of the Twitter

streaming API. To test the performance of IndexedHBase for handling potential

data rates even faster than the current streams, we design a simulation test using a

recent .json.gz file for July 03, 2013. In this test, we vary the number of distributed

streaming loaders and test the system data loading speed against different number

of loaders. For each case, the whole 2013-07-03.json.gz file is split into the same

number of fragments with equal size, which are then distributed evenly across all

the nodes. One loader is started to process each fragment on the same node. The

loader reads data from the stream of the local file fragment rather than Twitter

streaming API. So this test measures how the system performs when each loader

gets an extremely high incoming data rate that is equal to local disk I/O speed.

Fig. 14 shows the total loading time when the number of distributed loaders in-

creases by powers of 2 from 1 to 16. Once again, concurrent access to the fixed

number of HBase region servers results in a decrease in speed-up as the number of

loaders is doubled each time. Specifically, the system throughput is almost saturated

when we have 8 distributed loaders. For the case of 8 loaders, it takes 3.85 hours to

load all 45,753,194 tweets for July 3, 2013, indicating the number of tweets that can

be processed per day on 8 nodes is about 6 times the current daily data rate. There-

fore, IndexedHBase can easily handle the streaming data load in Truthy. In the case

of vastly accelerated data rates, we can always increase the system throughput by

adding more nodes.

4.4 Query Evaluation Performance

Separate Index Structures vs. Customized Index Structures

17

As analyzed in Section 2, one major purpose of using customized index structures

is to achieve lower query evaluation complexity than building traditional inverted

indices on separate data fields. To verify this, we use a simple “get-tweets-with-

meme” query to compare the performance of IndexedHBase and a solution using

separate indices on the fields of memes and tweet creation time, which is imple-

mented through the Riak bucket where “created_at” is defined as a separately in-

dexed field instead of an inline field.

Fig. 15. Query evaluation time with sepa-

rate meme and time indices (Riak)
Fig. 16. Query evaluation time with cus-

tomized meme index (IndexedHBase)

In this test, we load the first 4 days’ data of June 2012 to both IndexedHBase and

the Riak bucket and measure the query evaluation time with different memes and

time windows. For memes, we choose “#usa”, “#ff”, and “@youtube”, each con-

tained in a different subset of tweets. “#ff” is a popular hashtag on Twitter, meaning

“follow Friday”. For each meme, we use 3 different time windows with a varied

length of 1 to 3 hours. Queries in this test only return tweet IDs – they don’t launch

an extra MapReduce phase to get the tweets’ content. Fig. 15 and 16 present the

query evaluation time for each indexing strategy. As shown in the results, using the

customized meme index table, IndexedHBase not only achieves a query evaluation

speed that is tens to hundreds of times faster, but also demonstrates a different pat-

tern in query evaluation time. When separate meme index and creation time index

are used, the query evaluation time mainly depends on the length of time window;

the meme parameter has little impact. In contrast, when customized meme index is

used, the query evaluation time mainly depends on the meme parameter. For the

same meme, the evaluation time only increases marginally as the time window gets

longer. These observations verify our theoretical analysis in Section 2.

Query Evaluation Performance Comparison

This set of tests is designed to compare the performance of Riak and IndexedHBase

for evaluating queries involving different number of tweets and different result

sizes. Since using separate indices has proven inefficient on Riak, we choose to test

the query implementation using “created_at” as an inline field. Queries are executed

on both platforms against the data loaded in the historical data loading tests. For

18

query parameters, we choose one popular meme “#euro2012”, along with a time

window with a varied length of 3 hours to 16 days. The start point of the time win-

dow is fixed at 2012-06-08T00:00:00, and the end point is correspondingly varied

exponentially from 2012-06-08T02:59:59 to 2012-06-23T23:59:59. This time pe-

riod covers a major part of the 2012 UEFA European Football Championship.

The queries can be grouped into 3 categories based on the manner in which they

are evaluated on Riak and IndexedHBase:

(1) No MapReduce on either Riak or IndexedHBase

The “meme-post-count” query falls into this category. On IndexedHBase, query

evaluation is done by simply going through the rows in meme index tables for each

meme in the query and counting the number of qualified tweet IDs. In case of Riak,

since there is no way to directly access the index data, this is accomplished by issu-

ing an HTTP query for each meme to fetch the “id” field of matched tweets.

Fig. 17 shows the query evaluation time on Riak and IndexedHBase. As the time

window gets longer, the query evaluation time increases for both. However, the ab-

solute evaluation time is much shorter for IndexedHBase, because Riak has to spend

extra time to retrieve the “id” field.

Fig. 17. Query evaluation time for

“meme-post-count”

Fig. 18. Query evaluation time for

“timestamp-count”

(2) No MapReduce on IndexedHBase; MapReduce on Riak

“timestamp-count” falls under this category. Inferring from the schema of the

meme index table, this query can also be evaluated by only accessing the index data

on IndexedHBase. On Riak, it is implemented with MapReduce over Riak search

results, where the MapReduce phase completes the timestamp counting based on

the content of the related tweets. Fig. 18 shows the query evaluation time on both

platforms. Since IndexedHBase does not need to analyze the content of the tweets

at all, its query evaluation speed is orders of magnitude faster than Riak.

(3) MapReduce on both Riak and IndexedHBase

Most queries require a MapReduce phase on both Riak and IndexedHBase. Fig.

19 shows the query evaluation time for several of these. An obvious trend is that

Riak is faster on queries involving a smaller number of related tweets and a small

result set, but IndexedHBase is significantly faster on queries involving a larger

number of related tweets and results. Table 4 lists the results sizes for “get-tweets-

19

with-meme” (row 1) and “get-mention-edges” (row 2). The other queries have a

similar pattern in result sizes.

Fig. 19. Query evaluation time for queries requiring MapReduce on both platforms

Table 4. Result sizes for get-tweets-with-meme and get-mention-edges

3-hour 6-hour 12-hour 1-day 2-day 4-day 8-day 16-day

1287 2539 9342 87596 144575 234643 434043 606062

673 1367 4885 31330 49265 80547 145498 207783

The main reason for the performance difference observed is the different char-

acteristics of the MapReduce framework on these two platforms. IndexedHBase re-

lies on Hadoop MapReduce, which is designed for fault tolerant parallel processing

of large batches of data. It implements the full semantics of the MapReduce com-

puting model and applies a heavyweight initialization process for setting up the

runtime environment on the worker nodes. Hadoop MapReduce uses local disks on

worker nodes to save intermediate data and does grouping and sorting before pass-

ing them to reducers. A job can be configured to use zero or multiple reducers.

By comparison, the MapReduce framework on Riak is designed for lightweight

use cases where users can write simple query logic with JavaScript and get them

running on the data nodes quickly without a complicated initialization process.

There is always only one reducer running for each MapReduce job. Intermediate

data are transmitted directly from mappers to the reducer without being sorted or

grouped. The reducer relies on its memory stack to store the whole list of interme-

diate data, and thus has the risk of crashing for large intermediate data sizes. Fur-

thermore, the default timeout of the reducer is set to 5 seconds, and we actually had

20

to change this parameter in the source code and recompile Riak to get some of the

above queries working.

Since most queries in Truthy use time windows at the level of weeks or months,

IndexedHBase is more suitable for the queries above.

Improving Query Evaluation Performance with Modified Index Structures

One advantage of IndexedHBase is that it can accept dynamic changes to the index

structures to achieve more efficient query evaluation. To verify this, we extend the

meme index table to also include user IDs of tweets in the cell values, as illustrated

in Fig. 20. Using this new index structure, IndexedHBase is able to evaluate the

“user-post-count” query by only accessing index data.

Fig. 20. Extended meme index table schema

We test this schema change on the tables for the 2012-06 dataset. We used the

batch indexing mechanism of IndexedHBase to rebuild the meme index table, which

took 3.89 hours. The table size increased from 14.23GB to 18.13GB, which is

27.4% larger. Fig. 21 illustrates the query evaluation time comparison. Obviously,

query implementation using the new index structure is faster by more than an order

of magnitude. In cases where “user-post-count” is frequently used, the query eval-

uation speed improvement is definitely worthy the storage overhead.

Fig. 21. Query evaluation time comparison with modified meme index table schema

21

5. Related Work

From the perspective of [16], our current work on IndexedHBase tries to address

the temporal challenge in analysis scenarios of social data. References in [16] pro-

vides a more complete list of related work about temporal and spatial queries in-

volving social data.

Our customizable index structures share similar inspiration to multiple-column

indices used in relational databases, but index a combination of full-text and primi-

tive-type fields. Compared with traditional inverted indices [4], IndexedHBase pro-

vides more flexibility about what to use as keys and entries, so as to achieve more

efficient query evaluation with less storage and computation overhead.

Solandra (DataStax) [21] and Riak [22] are two typical NoSQL database systems

that support distributed inverted indices for full-text search. Specifically, Solandra

is based on Cassandra, which uses a similar data model to HBase. Similar to Riak,

Cassandra also employs a P2P architecture to support scalable data storage, and

relies on data replication to achieve fault-tolerance. As discussed in Section 2, in-

verted indices on Solandra and Riak are designed for text retrieval applications, and

thus not suitable for handling Truthy quries.

Google’s Dremel [8] achieves efficient evaluation of aggregation queries on

large-scale nested datasets by using distributed columnar storage and multi-level

serving trees. Moreover, Power Drill [13] explores special caching and data skip-

ping mechanisms to provide even faster interactive query performance for certain

selected datasets. Percolator [3] replaces batch indexing system with incremental

processing for Google search. Inspired by Dremel [8] and Power Drill [13], we will

consider splitting the tweet table into more column families for even better query

evaluation performance. On the other hand, our customizable indexing strategies

could also potentially help Dremel for handling aggregation queries with highly se-

lective operations.

Discretized Streams [14] proposes a fault-tolerant distributed processing model

for streaming data by breaking continuous data streams into small batches and then

applying existing fault-tolerance mechanisms used in batch processing frameworks.

Ideas in [14] will be useful for our next step on developing a fault-tolerant streaming

data processing framework for Truthy. Since streaming data are mainly involved in

the loading and indexing phase, simpler failure recovery mechanisms may be more

suitable.

6. Conclusions and Future Work

We describe a use case study about building an efficient and scalable storage plat-

form, IndexedHBase to support the Truthy social data observatory. As a result of

our experimentation, we came to some interesting conclusions.

22

For starters, parallelization and indexing are key factors in addressing the chal-

lenges brought by the sheer data size and temporal queries of social data observato-

ries. In particular, parallelization should be explored through every stage of data

processing, including loading, indexing, and query evaluation.

Furthermore, index structures should be flexible and customizable, rather than

static, to effectively take advantage of the special characteristics of the dataset and

queries and achieve the best query evaluation performance at the cost of less storage

and computation overhead. In order to achieve this, a general customizable indexing

framework is necessary. To deal with the large size of intermediate data and results

involved in the query evaluation process, complete and reliable parallel processing

frameworks such as Hadoop MapReduce are needed. Lightweight frameworks like

Riak MapReduce are not capable of handling queries involving analysis of large

datasets.

To the best of our knowledge, IndexedHBase is a first in developing a totally

customizable indexing framework on a distributed NoSQL database. Although our

motivation originally came from social data observatories, the customizable index-

ing framework and two-phase query evaluation strategies are generally applicable

to all kinds of applications. There are four directions that we can work on in the

future:

First, our current distributed streaming data loading strategy is simple and does

not take failure recovery of data loaders into consideration. Building a fault tolerant

streaming data loading mechanism with a more sophisticated data distribution

framework will be a major part of our future work.

Secondly, we will try to further improve the efficiency of the parallel query eval-

uation strategy by taking data locality into consideration.

Thirdly, another major part of our future work is to add support for spatial queries

by inferring and indexing spatial information contained in tweets. Thanks to the

batch index building mechanism supported by IndexedHBase, adding spatial indi-

ces can be done efficient without completely reloading the original dataset.

Finally, we will try to integrate IndexedHBase with Hive [20] to provide a SQL-

like data operation interface for Truthy users. How to make the customized index

structures visible and useful to the query execution engine in Hive will be an inter-

esting research issue to explore.

References

[1] G. Graefe (1993). Query evaluation techniques for large databases. ACM Computing Surveys

(CSUR), 25(2): 73-169, 1993.

[2] S. Wang (2010). A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and

Spatial Analysis. Annals of the Association of American Geographers, 100(3): 535-557, 2010.

[3] D. Peng, F. Dabek (2010). Large-scale Incremental Processing Using Distributed Transactions

and Notifications. Proceedings of the 9th USENIX Symposium on Operating Systems Design

and Implementation, (USENIX 2010).

23

[4] J. Zobel, A. Moffat (2006). Inverted files for text search engines. ACM Computing Surveys,

38(2) - 6, 2006.

[5] K. McKelvey, F. Menczer (2013). Design and Prototyping of a Social Media Observatory.

Proceedings of the 22nd international conference on World Wide Web companion, (WWW

2013).

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes,

R. Gruber (2006). Bigtable: A Distributed Storage System for Structured Data. Proceedings of

the 7th Symposium on Operating System Design and Implementation, (OSDI 2006).

[7] G. von Laszewski, G. Fox, F. Wang, A. Younge, A. Kulshrestha, G. Pike (2010). Design of the

FutureGrid Experiment Management Framework. Proceedings of Gateway Computing Envi-

ronments Workshop, (GCE 2010).

[8] S. Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis (2010).

Dremel: Interactive Analysis of Web-Scale Datasets. Proceedings of the 36th International

Conference on Very Large Data Bases, (VLDB 2010).

[9] M. Conover, J. Ratkiewicz, M. Francisco, B. Goncalves, A. Flammini, F. Menczer (2011).

Political Polarization on Twitter. Proceedings of the 5th International AAAI Conference on

Weblogs and Social Media, (ICWSM 2011).

[10] E. Bakshy, J. Hofman, W. Mason, D. Watts (2011). Everyone’s an influencer: quantifying

influence on Twitter. Proceedings of the 4th ACM international conference on Web search and

data mining, (WSDM 2011).

[11] L. Weng, A. Flammini, A. Vespignani, F. Menczer (2012). Competition among memes in a

world with limited attention. Nature Sci. Rep., (2) 335, 2012.

[12] A. Choudhary, W. Hendrix, K. Lee, D. Palsetia, W. Liao (2012). Social media evolution of

the Egyptian revolution. Communications of the ACM 55: 74–80, 2012.

[13] A. Hall , O. Bachmann , R. Büssow , S. Gănceanu , M. Nunkesser (2012). Processing a

Trillion Cells per Mouse Click. Proceedings of the 38th International Conference on Very

Large Data Bases, (VLDB 2012).

[14] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica (2012). Discretized Streams: An Efficient and

Fault-Tolerant Model for Stream Processing on Large Clusters. Proceedings of the 4th

USENIX conference on Hot Topics in Cloud Computing, (HotCloud 2012).

[15] M. Conover, C. Davis, E. Ferrara, K. McKelvey, F. Menczer, A. Flammini (2013). The Geo-

spatial Characteristics of a Social Movement Communication Network. PLoS ONE 8(3):

e55957, 2013.

[16] L. Derczynski, B. Yang, C. Jensen (2013). Towards Context-Aware Search and Analysis on

Social Media Data. Proceedings of the 16th International Conference on Extending Database

Technology, (EDBT 2013).

[17] A. Padmanabhan, S. Wang, G. Cao, M. Hwang, Y. Zhao, Z. Zhang, Y. Gao (2013). FluMap-

per: An Interactive CyberGIS Environment for Massive Location-based Social Media Data

Analysis. Proceedings of Extreme Science and Engineering Discovery Environment: Gateway

to Discovery, (XSEDE 2013).

[18] Apache Hadoop. http://hadoop.apache.org/.

[19] Apache HBase. http://hbase.apache.org/.

[20] Apache Hive. http://hive.apache.org/.

[21] DataStax. http://www.datastax.com/.

[22] Riak. http://basho.com/riak/.

[23] Twitter Streaming API. https://dev.twitter.com/docs/streaming-apis.

http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://www.datastax.com/
http://basho.com/riak/
https://dev.twitter.com/docs/streaming-apis

